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Abstract

Kinetic modeling of the crystal growth from pre-existing nuclei was reexamined to obtain a fundamen-
tal information about the controlled crystallization of glasses during formation of advanced inorganic
glass-ceramics. Methods of kinetic analysis were reviewed by taking account of thermal history of the
sample within the temperature range of nucleation. An accommodation function depending on the ther-
mal history was introduced in the kinetic equation. The role of the accommodation function was rein-
vestigated when determining the activation energy from a series of kinetic curves. The kinetic descrip-
tion of the crystal growth in the samples with different thermal history was generalized by extrapolating
the rate behavior to infinite temperature.
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thermal history

Introduction

Crystallization process of glasses is of technological importance in the manufacture of
glass-ceramics [1]. The physico-chemical properties of the glass-ceramics largely depend
on the microstructure, the content of the crystalline and residual glass phases, etc. Con-
trolled crystallization of the as-prepared glass with a specific composition makes it possi-
ble to obtain the glass-ceramic materials with desired properties. Detailed kinetic under-
standing on the crystallization process is therefore fundamental to design the conditions
for the controlled crystallization and to regulate the morphology and microstructure of
the product, ensuring the physico-chemical properties desired.

The crystallization of glasses is a complex process that may proceed in several
stages. As often cited, these stages can consist of nucleation and crystal growth which
are controlled by short-range diffusion or chemical reaction interface or by phase sep-
aration, structural relaxation and delocalization, long-range diffusion and viscous
flow, heat transfer, etc. In a strict sense, the real kinetics of these processes can be
fully described only on the basis of the fundamental understanding of the respective

1418–2874/2000/ $ 5.00

© 2000 Akadémiai Kiadó, Budapest

Akadémiai Kiadó, Budapest

Kluwer Academic Publishers, Dordrecht



elemental processes. It is usually difficult, however, to describe such simultaneous
and/or consecutive processes separately.

Conventionally, an approach based on the physico-geometry of the advance of
the reaction interfaces has been used to characterize the overall kinetics of the crystal-
lization process. For a simple rate process of crystallization, kinetic equation is gen-
erally expressed by
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where α , f(α ) and a(α , t, T, P,...) are the fractional reaction, kinetic model function
derived on the basis of a simple physico-geometric characteristics of the reaction
[2−5] and accommodation function [6, 7], respectively. The function a is understood
as is accommodating the actual reaction kinetics in the fundamental kinetic equation
of the Arrhenius type [8, 9]. In the conventional kinetic analysis, the a function is
usually setting equal to unity, when assuming the highly idealized reaction behavior
under strictly controlled conditions.

In this paper, an accommodation function is introduced for the kinetic analysis of
the crystal growth from pre-existing nuclei where the number of pre-existing nuclei
changes depending on the thermal history within the temperature range of nucleation. It
has already been suggested by other authors [10−12] that change in the number of
pre-existing nuclei has to be taken into account when determining the activation energy
by the Kissinger method and isoconversion methods. More generalized kinetic modeling
of such a process seems to be possible by introducing the accommodation function.

Model of the crystallization process

Following behavior of a glass forming system is assumed in the present study.
1.The glass sample can be prepared by cooling of the glass forming melt even at

a slow cooling rate.
2. Temperature ranges of nucleation and growth of the nuclei are separated suffi-

ciently in a time scale of thermal treatment, where the formation of nuclei takes place
in a lower temperature range and the subsequent growth of the nuclei proceeds inde-
pendently in the higher temperature range.

3. The rate behaviors of nucleation during cooling of the glass forming melt and
during heating of the as-prepared glass are identical, supposing of a relatively slow
rate of the nucleation.

4. No secondary nucleation takes place in the temperature range of crystal growth.

Number of pre-existing nuclei for subsequent growth

When a glass forming melt is cooled below glass transition temperature at a rate of Φ1

and subsequently the formed glass is heated at a rate of Φ2 up to a temperature be-
tween the higher limit of nucleation range and the lower limit of growth range, the
system passes through the temperature range of nucleation twice. The number of
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pre-existing nuclei, N, for the subsequent growth is expressed generally by the fol-
lowing equation [11, 12].

N a N N= = = =∫ ∫I(T) t I(T) Td with d const
0

t

T

T

1

2

( ) .Φ 0 0 (2)

where I(T) and a(Φ) are the rate of nucleation per unit volume and a function of Φ1

and Φ2, respectively. Considering the relationship between the rate of nucleation and
the rate of temperature change of the sample within the temperature range of nucle-
ation, the a(Φ) can be formalized for the following three different cases.

A) When the values of Φ1 and/or Φ2 are small enough as compared to the rate of
nucleation, the number of nuclei in the glass sample is saturated. In this case, the
value of N is constant irrespective of Φ1 and Φ2 applied.

a(Φ) = const. (3)

The similar situation is expected when a suitable nucleus-forming agent is added or
annealing within the temperature range of nucleation is performed for a sufficiently
long time.

B) If the glass forming melt was rapidly quenched, the number of nuclei in the
quenched glass can be practically ignored. On heating the glass sample at Φ2, the
value of N is inversely proportional to Φ2 [11, 12]. Therefore, we can write

a( )Φ
Φ

= 1

2

(4)

C) If the number of nuclei is not saturated when cooling the glass-forming melt
at a slow Φ1 and heating the prepared glass at Φ2, the value of N is influenced both by
Φ1 and Φ2 [12]

a( )Φ
Φ Φ

= +1 1

1 2

(5)

This model was recently tested on the system of Li2B4O7, which, exhibits similar
behavior of glass formation, nucleation and crystal growth as assumed in the present
study [13, 14].

Kinetic equation for crystal growth

By assuming the Arrhenius relationship, the rate of linear advance of the crystalliza-
tion interface, ν(T), can be expressed as [11, 12]

ν ν( )T
E
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whereνo and E are the pre-exponential factor and activation energy for the linear growth,
respectively. By taking account of the growth dimension and impingement of crystal par-
ticles, the following kinetic equation is derived for the overall crystal growth.

d

d
exp

0

m

0

α α

ν α
t

A
E

RT
f

A gN a f

= −

 




=

( )

[ ( )] ( )/with andΦ 1 = − − − −m( )[ ( )] /1 1 1 1α αln m

(7)

where α , g and m are the fractional crystallization, a geometric factor depending on
the growth dimension and the kinetic exponent depending on the growth dimension
and rate law for the linear growth [2−5], e.g., linear law or parabolic law, respec-
tively. The kinetic model function, f(α ), is the Johnson-Mehl-Avrami-Erofeev-
Kolgomorov(JMAEK) equation [2−5], which is utilized usually for the solid-state re-
actions of nucleation-growth type.

Determination of activation energy for crystal growth

Isothermal method

The sample, thermally treated within the temperature range of nucleation at various
rates of temperature change of Φ1 and Φ2, is then heated rapidly to a temperature
within the temperature range of crystal growth and subsequently the temperature is
kept constant to measure the isothermal kinetic curve for the growth. The rate equa-
tion at a constant temperature is

d

d

α α
t

k= f ( ) (8)

where k is the apparent rate constant. When an appropriate value of m is assumed, a
linear plot of dα /dt vs. f(α ) is obtained, where the slope corresponds to the value of k.
Taking account of the influence of Φ1 and Φ2 on the apparent value of k, the tempera-
ture dependence of k is expressed by
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The value of E is determined by the following Arrhenius plot taken account of
a(Φ) and the most appropriate value of m determined previously through plotting
dα /dt vs. various f(α ).
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Kissinger method

The sample, thermally treated within the temperature range of nucleation at various
rates of temperature change of Φ1 and Φ2, is then heated linearly at various rates of
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Φ3

Φ3 to measure the non-isothermal kinetic curves for the growth. The Kissinger
method [15] has been widely used for determining approximately the activation en-
ergy of the solid-state reaction from the temperature at maximum transformation rate
at various heating rates.

The first derivation of Eq. (1) with respect to time gives [16]
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At the peak maximum
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where subscript p denotes the value at the peak maximum. The general kinetic equa-
tion of the Kissinger method is obtained by combining Eqs (11) and (12) [16].
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By assuming the value of m, the apparent value of E is estimated using the following
equation taken account of a(Φ) [10, 12].
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Because, in many cases, the plots of ln[ ]3 p
m( / )/ ( ) /Φ ΦT a2 1 vs. Tp

−1 show fairly linearity
irrespective of m assumed, the correct value of E can not be selected without previous
knowledge of m.

Isoconversion method

The isoconversion methods [17] can be applied to obtain the value of E, where kinetic
relationship among the kinetic data of a series of kinetic curves at a selectedα is used.
Taking logarithms of Eq. (7) by considering a(Φ) [12],
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It follows from Eq. (15) that a correction of vertical axis by taking account of
a(Φ) and m is required for applying the Friedman method [18] in order to determine
the value of E for the process assumed.

Similarly, the isoconversion method in integral form is also formalized for the
present process. Integral kinetic equation is given as [3, 4]
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where π(y) is an approximate function of exponential integral. Using the simplest
function of π(y), i.e., π(y)=1/y, the equation of the integral isoconversion method is
given by [12]
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As is the case with the Kissinger method, the apparent values of E for the value of m
assumed are obtained from the isoconversion methods. Previous knowledge of the m
value of further analytical procedure is required to select the correct value of E.

Kinetic model and pre-exponential factor

In order to generalize the kinetic description for the crystal growth of the sample with
different thermal history, i.e., Φ1 and Φ2, it is convenient to extrapolate the rate be-
havior in real time to that in generalized time θ at infinite temperature [19]. For exam-
ple, the kinetic curves of crystal growth obtained under a linear heating at Φ3 can be
extrapolated to infinite temperature by the following equations using the E value de-
termined by assuming m.
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where π(y) is an approximate function proposed by Senum and Yang [20]. By taking
account of a(Φ), the kinetic equations at infinite temperature are written as
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According to Eqs (20) and (21), linear plots of g(α ) vs. θn and (dα /dθ)n vs. f(α ) can be
obtained when utilizing an appropriate value of m throughout the kinetic analysis.
The value of A′, determined from the slope of these linear plots, is the constant value
obtained by reducing the value of N in the respective measurements to N0.

By multiplying Eqs (20) and (21), the following equation can be obtained [21].
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Equation (22) shows that the multiplied value of (dα /dθ)θ is only dependent on α . For
the JMAEK equation, the value of f(α )g(α ) shows the maximum at α =0.632, irre-
spective of m [21]. Validity of the above kinetic procedure based on the JMAEK
equation can be evaluated from the position of the maximum of the value of (dα /dθ)θ.

Practical significance of the kinetic modeling

For the crystallization of glasses in which the temperature ranges of nucleation and
crystal growth are separated sufficiently in a time scale of thermal treatment, the gen-
eralized kinetic equation, Eq. (7), can be derived by introducing the accomodation
function. The function can be derived from the dependence of the number of
pre-existing nuclei for the subsequent growth on the cooling rate during the
glass-formation and heating rate during the crystallization treatment.

Thermoanalytical (TA) methods have widely been used for the kinetic charac-
terization of the crystallization of glasses. As the glass sample passes through the
temperature range of nucleation during the measurement, dependence of the number
of nuclei on the heating rate during the TA measurement has to be taken into account
when analyzing the kinetics of crystal growth [10−12]. In addition, changes in the
crystallization kinetics due to the thermal history of the sample can be described more
comprehensively by considering the dependence of the number of nuclei on the cool-
ing rate during the glass-formation treatment [12−14].

In preparation of advanced glass-ceramic materials, the kinetic understanding
accounting for the thermal history of the glass-sample can be used to control system-
atically the crystallization process and the characteristics of the product glass-
ceramics. The practical applicability of the model described has already been tested
for the crystallization process of Li2B4O7 [13, 14].
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